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Short Papers

Expansions for the Capacitance of a Square
in a Square with a Comparison

Henry J. Riblet

Abstract—Expansions are given for the capacitance per unit length for
the geometry in which two infinite square cylinders are placed concentric
with each other with their sides parallel to each other. A comparison is
made with an expansion for the capacitance of the Bowman squares.

[. INTRODUCTION

About 50 years ago, Bowman [1] determined the capacitance of
the geometry 1n Fig. | by means of a conformal transformation which
maps the quadrilateral, ABCD, in the z-plane of Fig. I onto the
rectangle ABCD 1n the w-plane of Fig. I. For the case which he
constdered explicitly [1, (20)]

LNy  1+p
L'(A) - 1—p

8))

if p = a/b. Here L and L' are the complete elliptic integrals of
modulus \. Thus, if ' js defined by

P = exp (frrL/Ll) 2
to avoid confusion with a ¢ to be used later, from Hancock [2]

Jio L= 2 2t -

A= 1+27’/+27"4+ZI'/9+"" 3

The equation relating \ to the modulus k. which determijnes the
complete elliptic integrals A (k) and A (k) is [1. (5)]. This equation
may be solved in two steps

Y 2k
Ty = 207 — L I = )
0 0 1+ ]‘

)

Notice that A > /.5 from (3) and (1) since 1’ < .044. If € 15 defined
by

g:l<1___\/£> (5)
2\ 1+ Vo

then. from Whittaker and Watson (3]
¢ = e+ 26 + 156" + 1506 - (6

Finally, the capacitance of the square coax 1s given by

K(k)  W(ke) _ ,
= 4————1{,“\‘0) = —dln(¢")/7. (7)
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If ko from (4) is greater that V.5, kb may be substituted in (5) and
(6) to find ¢. Then

Cy = —167/In (q). (8)

Values obtained from this equation are given in the middle row of
Table L

[I. THE EXPANSION IN POWERS OF p

For this purpose, (1)—(4) are expanded in powers of p as follows

L) o
= 2§
L'y 1+ 9 (9

=1

P = 043214 — 27152p + .38149p" — .35204p°
—.26582p" 4 .11995p° + .25152p° + .11973p"
—.073144p° — .17209p" — .14312p'° — .037658p" "

+.069958)'% +.12723p" + .11925p"* 4+ -+ - (10)
V= 84090 + 92013, — 1.51023p% — 55084p°
1+ 2863020 +.97831p° — 4.33416p° — 2.94151p"
+ 7.35630p" + 4.10501p° — 11.0331p™° — 5.10871p""
+16.3695p" + 8.51710p"° — 25.0456p"" + - - (11)
A= 5+ 2.1884dp — 10.4810,° 4 43.5036,° — 144.242)"
+413.027p" — 1081.83p"" + 2648.37p" + -
E, = 1.37688p — 20 9620p° + S7.0071p° — 288.485p"
+ 826.055p" — 2163.66p' " + 5206.74p"° 4+ -+, (12)
ke = 19.1571p° — 183.497p" + 1201.05p° — 6173.02,"
+26895.8p1% — 103772p" + 364044p - (13)
Now
L' (ko) 16 1[,, 13, 23, 2701
- =ln{ =)= S|k + k4 ok + kg
K (ko) “(A'g 3 [Fo gkt ggh F Toasg
5057 TOT15 | 4,
+ o660 7‘8643'7 L B

Then substituting (5) into (6) and making use of the relationship
between & and ky. it 15 found that

Ch = 8n/(4ln(1/p) — 36017 +.76457p"

— 1.3098p° + 3.36895°% 4 --+).  (15)

The values obtained from this equation are tabulated as ('(p)
the first row of Table I.

i, 27
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Fig. 1. z and w complex planes.
TABLE 1
CAPACITANCE OF SQUARE COAX
P 1 .2 .3 .4 .5 .6 T .8 .9
C(p)| 2-8398 | 4.1345 | 5.6328 | 7.5616 110.2336 14.2193
Co 2.8398 | 4.1345 [ 5.6328 | 7.5615(10.2341(14.2349{20.9016{34.2349
C(8) | 2-8470 | 4.1346 5.6328 | 7.5615{10.2341|14.2349(20.9016[34.2349|74.2349
é .9 .8 7 .6 .5 .4 .3 .2 .
III. THE EXPANSION IN TERMS OF & The first two terms of this expansion, except for a factor of 8
If§ =1-—p, then (b + a) In(2)
a n
LOV/L(A) =2/6—1 (16) 1/6=5-In(2)/r=50—5——
and is given in [1. p. 105].
v =exp[~-n(2/6 - 1)]. an The values of Cp given by (22) are tabulated as C'(6) on the third

The expansion which results from the substitution of (16) into
(3)=(7), may be expressed as a power series in 7' with a logarithmic
singularity at r' = 0. This, because of (16). is equivalent to a pole
for 6 = 0. The result is a mixed expansion in terms of 6 and r'.

We have
Vi=1—4" 48" 160" + 320" 4+ -

A =1-16r" + 12877 — 704" + 30720 + -+ -
ko = 1 =32 4 25652 — 14087 + 6144¢™ + . ..
Vho =1 — 167" — 704" — 8192+ + - -
e=dr' 4+ 327" + 4320 469120 + - -

g =4r' + 320" + 432" + 69120 4 - .

(18)

19)

(20)

21

In(g) =ln(4)+ln(r') + 8 + 76r'% +11034.7r"° + - -+

I 12 4 =13
Co =1 %_1_111(4)—{—8)" + 7677 4+ 1034.7r n

T

(22)

row of Table 1. It is seen from Table I that (15) and (22) give five
place agreement with the values given by (7).

IV. THE COMPARISON

In a former paper, an expansion is given, in terms of 4, for
the capacitance of the Bowman Square, where the geometry differs
from the geometry in this short paper in that the inner square is
rotated through 45°.2 The first five terms of that expansion [4, (28)]

are

Co = 87 /(4log 1/6) + 1.02613 — .191146" — .081885°
—.0523188" +---. (23)

If p is replaced by 6/+/2 in (15), to account for the difference in
the definitions of & and p

Co = 81 /(4log (1/6) + 1.02614 + .191146" — .081866"

+.052646"% 4 -+ (24)

2For a discussion of the conformal mappmg involved i these solutions,
see [5, pp. 87, 881.
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Is it possible that these expansions are identical except for the sign
of the odd powers of &7

REFERENCES

[11 F. Bowman, Introduction to Elliptic Functions with Applications  New
York: Dover, 1961, pp. 99-103

[2] H. Hancock, Theory of Elliptic Functions
244,

[3] E. T. Whittaker and G. N. Watson. A Course of Modern Analysis
Cambridge. MA: Univ. Press, 1940, pp 464, 479. 492.

[4] H.J. Riblet, “Expansions tor the Capacitance of the Bowman Squares.”
IEEE Trans. Microwave Theory lech., vol. 36, pp. 1216-1219, July
1988

[5] R Schinzinger and P. A A. Laura, Conformal Mapping. Method and
Applicanions  Amsterdam-Oxford-New York, Tokyo: Elsevier, 1991.

New York Dover, 1958. p

Continuous Spectrum and Characteristic
Modes of the Slot Line in Free Space

Marat Davidovitz

Abstract—The continuous spectrum of the slot in an infinite ground
plane is expressed in terms of the Mathien functions. The so-called
characteristic values and field modes of the slot are stated explicitly.

I. CONTINUOUS SPECTRUM REPRESENTATION

In a recent paper [1] a general eigenspectrum construction method
for open waveguides was presented. As an illustration, the case of
the slotted screen was considered. Extensive analysis of the same
problem was also undertaken in [2] and subsequent publications by
the same authors. The purpose of this note is to state in closed form
the eigenmodes, the charactenistic slot-field modes and values for
the aforementioned geometry. These may be used to venify numer-
1cal solutions, as basis functions for more complex, nonseparable
geometries, or to investigate slot-line discontinuities.

Consider an infinite slot of width a in a perfectly conducting, zero-
thickness screen. Let the center line of the slot define the --axis, and
the .x-axis lie in the plane of the screen. The fields in this structure can
be represented in terms of a complete, orthonormal set of :-gurded
eigenfunctions, each satisfying appropriate boundary conditions on
the screen. The transverse-to-: cross section of the structure 1s un-
bounded and homogeneously filled; the eigenspectrum is continuous
and allows decomposition into TE. and TM. components [3]

For a complete description of the notation used here for the
elliptic cylindrical coordinates and the Mathieu functions the reader
is referred to [4].

A. TM. Eigenmodes

The transverse electric field of a TM. eigenmode can be rep-
resented as the gradient of a scalar function &,,(h.cosh i cost),
where h = ]Ek’”* 0 < k¢ £ x is the continuous spectral variable.
m is the discrete index associated with the angular solutjons and
1.t denote, respectively, the radial and angular elliptic coordinates.
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Following the approach employed in [5], [6] for the case of a ndged
elliptical wavegude, eigenmodes with even or odd symmetry with
respect to the plane of the screen are distinguished.

The even solutions are given by

D), (hocoshp,cos @) = Poy, (I, cosh )So,,(h.cost)
Pop, (k. coshp) = Nob, (h.1).J o, (h.cosh i)
— Jol, (h, 1)N o, (h.cosh u)

and the odd solutions by

By, (h.cosh . cos8) = Qo (hocosh ) So,, (I cosd)
Jo,, (I cosh )
m ]., ‘71 R
(205, (I, cosh ) Tor (h 1)
where So,, (h.cosf) is the m-th odd angular Mathieu function,
Jo, (h.coshiy) and No., (h.coshp) are, respectively, the radial
Mathieu functions of the first and second kind associated with the
odd angular solution, and prime denotes differentiation with respect
to . The boundary conditions on the screen are satisfied by virtue of
the fact that So,, (h.cos8) = 0 at # = 0, 7. Among other properties
of the two solutions are the following facts

Po,(h,1)=1 Po:,,(hql):()
Qo (h. 1) =10 Q(J/m(h.l)_:l
W(Po,,(h.coshp), Qomth.coshp)) =1

where YV denotes the Wronskian.

B. TE. Eigenmodes

The transverse magnetic field of a TE. eigenmode can be rep-
resented as the gradient of a scalar function W, (h,cosh i, cos @),
where the previously introduced notation 1s applicable.

The even solutions are given by

TS, (h,cosh g, cos ) = Pe,, (h,coshpr)Se . (h.cos )
Pe,, (h,coshp) = Je, (", 1)Ney, (hocosh )
~ Ne,, (h.1)Je,,(h, cosh )

and the odd solutions by

U (h.coshjicosd) = Qe (h.cosh u)Se,, (h.cosf)
Je, (hycosh)

Qcp(h.coshp) = ————— 2

denl ) Jem(h1)
where Se,, (h,cos#) is the mth even angular Mathieu function,
Jen{lhocoshp) and Nep, (h.ocoshp) are, respectively, the radial
Mathieu functions of the first and second kind associated with the
even angular solution, and prime denotes differentiation with respect
to y1. The boundary conditions on the screen are satisfied because
Qonlheo2f) = (até = 0,7. Additional properties of the two
solutions include

Pe,(h.ly=0 P (h,1)=1
Qemth,1)=1 Qe (h.1)=0
W(P¢,, (h,coshpu). Qe,,(h.coshpu)) = 1.
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